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Traditional techniques for computing electromagnetic solutions in
the time domain rely on finite differences. These so-called FDTD
{finite-difference time-domain) methods are usually defined oniy on
regular lattices of points and can be too restrictive for geometrically
demanding problems, Great geometric flexibility can be achieved by
abandoning the regular latticework of sample points and adopting an
unstructured grid. An unstructured grid allows one to place the grid
points anywhere one chooses, so that curved boundaries can be fit with
ease and local regions in which the field gradients are steep can be
selectively resolved with a fine mesh. In this paper we present a tech-
nigue for solving Maxwell’s equations on an unstruciured grid based on
the Taylor-Galerkin finite-element method. We present several numeri-
cal examples which reveal the fundamental accuracy and adaptability
of the method. Although our examples are in two dimensions, the
techniques and results generalize readily ta 3D, & 18594 Academic Press, inc.

I. INTRODUCTION

Traditional techniques for computing electromagnetic
solutions in the time domain rely on finite differences. These
so cailed FDTD ({finite-difference time-domain} methods
[1-3] are applicable to a broad range of problems and are
both reliable and accurnte. However, the regular lattices of
points on which the finite-difference operators are defined
can bhe too restrictive for geometrically demanding
problems. In particular, problems in which there is scatter-
ing from an object of complicated shape, or problems
requiring extreme local refinement of zones, are not well
suited to a regular finite difference grid. Geometric flexibility
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cin be achicved by abandoning the regular latticework of
sample points. Several useful approaches have evolved from
the strategy of deforming the mesh and using curvilinear
coordinates with finite differences [4]. Another strategy is
to adopt unstructured grids and employ finite-volume or
finite-element methods [5-11]. Traditionally, finite element
methods have been applied to electromagnetics in the fre-
quency domain, although the importance of applying these
methods in the time domain has recently been recognized
(8. 9]. An unstructured grid connects a given point to an
arbitrary number of other grid points. Typically the points
are connected to form triangles in 2D or tetrahedra in 3D.
An unstructured grid provides the greatest flexibility by
allowing one to place the grid points anywhere one chooses,
so that curved boundaries can be fit with ease. One can also
refline local areas of interest, either ab initio or dynamically,
without unduly affecting the resolution in other parts of the
problem domain.

In this paper we present a technique for the efficient solu-
tion of Maxwell’s equations on an unstructured grid. An
idea that we wish to stress, and whose importance should
become clear as our presentation unfolds, is that it is the
combination of the numerical technologics of unsiructured-
grid generation and refinement on the one hand, and of the
basic Taylor-Galerkin procedure and its enhancements on
the other, that make our approach to computational elec-
tromagnetics so powerful. Thus, we begin by describing in
Section 2 the methods used to generate and refine the
unstructured meshes for our electromagnetic calculations.
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In Section 3, we follow with an exposition of the
Taylor-Galerkin finite-element method as applied to
eleciromagnetics. We discuss our results and present our
conclusions in Section 4.

2. UNSTRUCTURED-GRID GENERATION
AND REFINEMENT

The generation of an unstructured grid appropriate to a
given problem (in hydrodynamics, aerodynamics, or elec-
tromagnetics) is a task that, while computationally inten-
sive, fortunately can be largely automated. The grid gener-
ator can concentrate the points where they are needed and
disperse them where they are not. The problem of smoothly
interfacing regions of very different grid resclution is vastly
simplified. Because the recent use of unstructured grids
allows the modelling of problems with complex geometries
and varying length scales, we feel that automatic unstruc-
tured grid generation is an integral part of the present
contribution, Therefore, we will describe the generation and
adaptation of unstructured grids in detail here, rather than
referring the reader to other publications.

To create an unstructured grid for the probiem at hand,
one must first specify a set of curves in 2D (or a set of sur-
faces in 3D) that define the boundaries of the computational
domain. In addition, it may be advantageous to associate
with certain subregions of the domain some particular
gridding preferences: the zone size, the zone stretching ratio
(ratio of the longest side to the shortest side), and the zone
orientation. Beyond these basic requirements, the task of
grid construction should be essentially automatic.

We use an automated grid-generation method known as
the advancing-front technique [12, 137]. Figure 1 illustrates

31

background

~ . / mesh

! boundary ~
I /o - ©
i ~ - -
! - - _ ~ -~ 4
T - -0 B o
~ — -
(y -
FIG. 1. A schematic illustration of the advancing front method.

A background mesh provides the generator with information about zone
preferences at different places in the domain. The boundary faces constitute
the initial front that then moves into the computational domain as
elements are added to the grid.

the basic idea. A boundary curve in 2D (surface in 3D) is
specified via a set of points joined by straight segments or
cubic splines. Gridding preferences are specified at each
point on a coarse background mesh. This background mesh
is itself an unstructured mesh of triangles (tetrahedra).
Once the boundary and the background mesh are
described 1o the generator, the creation of the mesh
proceeds automatically. Mesh creation via the advancing
front method involves several ingenious steps and some
special data structures {12]. Interpolating from the back-
ground mesh to points on the boundary curve (surface), the
generator first discretizes the boundary into a contiguous
set of line segments (triangular faces) which is called the
front. Starting in the vicinity of the shortest segment
(smallest face), a point is added to form a triangular
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FIG. 2. An unstructured mesh for a geometrically stiff problem: {a) A small wire occupies a portion of a much larger domain. (b) A closeup of the

gnd reveals the grid immediately surrounding the wire.
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(tetrahedral) element. The optimal location for the new
point is chosen by again interpolating the desired element
characteristics from the nodes of the background mesh. The
segment (or face) behind the new element is then deleted
from the segment (face) list and the new segments (or faces)
are added to update the definition of the front. This proce-
dure continues until the entire region is filled. In situations
where choosing the optimal point would create an element
that collides with another portion of the front (ie., the
optimal point lies hehind rather than ahbead of the froat),
the best neighboring point on the front is chosen. Finally,
the initially generated mesh can be relaxed by applying
tension to the nodes or refined by subdivision, or both.

As an example of the advantages of using an unstructured
grid for a problem requiring exireme local refinement, we
present Fig. 2. The grid here is rather long and has a very
fine wire embedded within it. In the computation, to be
described in Section 3, the upper and lower boundaries were
periodic, so that we actually are simulating an array of
wires. The wire is located within the densely zoned region of
Fig. 2a and its radius is only 1/150th of the width of the
region, A closeup of the zones near the wire is shown in
Fig. 2b. The unstructured grid allows us to use these very
fine zones near the wire and smoothly match them to coar-
ser zones in the remainder of the domain. The total number
of elements in this grid is 3614. If we were forced to solve this
problem using a uniform grid with one zone resolving the
wire, some 540,000 clements would be required.

The advancing-front grid generator adds new points to
the mesh being constructed according to the gridding
preferences specified for the background mesh. Of course,
the optimal choices for these preferences may depend sen-
sitively upon the solution to be obtained, and thus they are
the subject of insight and informed guesswork in the con-
struction of the initial mesh. Two methods are available for
refining such a preliminary mesh. The first is a dynamical
technique known as H refinement [ 157, and its principle of
operation is quite simple. One develops a criterion, usually
based on the magnitude of the first or second spatial
derivatives of the field variables for establishing local
bounds on the element sizes required to resolve the instan-
taneous structure of the fields. If an element becomes larger
than the requisite upper bound, it is subdivided. In 2D,
one triangular element is replaced by four; in 3D, one
tetrahedral element is replaced by eight. The data structure
linking the nodes, faces, and elements are all updated, the
new objects being added at the ends of the appropriate lists,
and the calculation proceeds.

A second method for refining a preliminary mesh is adap-
tive remeshing [ 16, 17]. This technique is particularly well
suited for problems in which high accuracy is required and
for which the cost of obtaining a sequence of progressively
better solutions is not prohibitive. As in the H-refinement
approach, one prescribes a criterion for establishing local
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bounds on the element sizes and for selecting stretching
factors and orientations as well. Rather than instananeously
refining the mesh, however, this information is accumulated
throughout the calculation and written out at its end. Then
the preliminary mesh and the gridding preferences derived
from the accumulated information are used to define the
background mesh for a second pass through the grid gener-
ator. The initial mesh thereby is adaptively refined to reflect
the local properties of the solution, and this new mesh can
be used to obtain a more accurate solution. The procedure
may be repeated as many times as is needed.

To illustrate the process of adaptive remeshing, we show
in Fig. 3 two griddings of a cylindrical scattering problem.
The grid in Fig. 3a is the initial grid, constructed from a sim-
ple background mesh specifying a uniform element size and
some stretching of the clements near the outer boundary
along the azimuthal coordinate, ie., transverse to the direc-
tion of propagaiion of the ouigoing scattered waves. The
incident wave is a monochromatic plane wave propagating
to the right, with a wavelength equal to 1/10th the circum-
ference of the cylinder. After evolving the solution for
several wave periods, we used an error indicator based on
the spatial derivatives to set the new element sizes, and ele-
ment stretching again was allowed near the outer boundary
in the direction transverse to the local direcion of propaga-
tion. In this adaptive remeshing, the minimum element size
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FIG. 3. Anexample of adaptive remeshing for the scatiering of a plane
wave frorn a circular cylinder. Information from a preliminary steady-state
calculation on the ab initio mesh (&) is used to generate an optimized new
grid (b) for a more accurate calcutation.
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was reduced near the cylinder for improved accuracy in the
computed fields there and increased near the outer bound-
ary to reduce the number of zones where such high resolu-
tion is unnecessary. We show the mesh which resulted from
the subsequent pass through the grid generator in Fig. 3b.
The number of points in the grid increased by roughly 25 %
during the rezoning, from 1977 to 2589. More impottant,
however, is the redistribution and resizing of the elements to
provide an optimal mesh for accurately solving the problem.
The success of this strategy will become evident later in
Section 3, when we present the resulting solution,

3. THE TAYLOR-GALERKIN METHOD APPLIED
TO ELECTROMAGNETICS

In the time domain, electromagnetics is essentially a
hyperbolic problem. Until recently, it was believed that
finite elements were not a good match to hyperbolic
systems of partial differential equations (PIDEs}). However,
Taylor-Galerkin methods [ 18, 197 have proven very sue-
cessful in such applications—specifically in computational
fluild dynamics. Donea [18], who is largely responsible
for the introduction of these methods, has analyzed
Taylor-Galerkin schemes for linear advection and has
found that they have good stability and low phase error.

Donea found that attending to the temporal truncation
error before spatial discretization consistently produced
better results than had previously been achieved -with
Galerkin methods. Our expectation was that these qualities
would carry over to electromagnetic applications, and we
have thus far not been disappointed.

The idea behind the Taylor-Galerkin formulation is very
simple. One first specifies a temporal truncation error by
expanding the unknowns in a Taylor series. The PDE ig
then used to replace partial derivatives in time with partial
dertvatives in space. Finally a Galerkin finite-element
approximation is applied to the spatial derivative operators.
To illustrate, consider the simple linear hyperbolic system
in 1D,

_ YW _

ot dx )

au
—C5,
dx
where ¢ = df (u)/0u is the characteristic speed which is inde-

pendent of u for linear problems. We expand the unknown
at time level # + 1 about the value at time [evel n,

S\ 1 aZ "
un+1=un+d{(§) +§At2(—ar—g) +0(At3) (2)

Substituting cxpressions for the time derivatives from (1)
into {2}, we obtain

n I 62 2
y ! =ll"—CAI(?E> +=ct A (—E) .

Ox 2 dx? (3)
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This procedure is similar to one for deriving the Lax—
Wendrofl scheme [20], and in fact, if one replaces the
derivatives with centered finite differences, Lax-WendrofT is
obtained. Instecad we apply the Galerkin approximation.
We expand u” as

W)= 3 ul Nil), )

where N;(x) is the nodal linear basis or shape function and
u; is the value of & at node /. On substituting (4) into (3) and
taking the inner product with another shape function N, (x),
we obtain

AN,
Z<NJ!N,->5H,=——CAIZ<N}- -a—x'>uf
1, o JONJONN |
“2¢ At2<ax &x>u" (3)

Here (F|G)=[ F(x)G(x)dx is the inner product and
Su=u"t! —u" The left-hand side invoives the operation of
the consistent mass matrix on the unknowns. The matrix
appearing in the second-order term on the right-hand side
is recognized as the stiffness matrix. It is the presence of this
extra term which accounts for the enhanced phase accuracy
and stability of the Taylor-Galerkin scheme over previous
finite-clement formulations for hyperbolic problems.
Equation (5) can be written in the more compact form

Mca u= f; (6)
where M is the consistent mass matrix and du and f are
nodal vectors, The matrix M- can be inverted by a simple
iterative technique. Denoting as M, the lumped mass
matrix, we write

Subt! =M {4+ (M, — M) ou*}. (N
It has been found empirically for triangular elements that
three iterations suffice. Wathen [21] has recently analyzed
upper bounds for the condition number of the assembled
mass matrix as derived from clement mass matrices. From
these he estimates convergence rates for triangular elements
that are sufficient to account for this experience.

To apply this method to electromagnetic propagation we
merely rewrite Maxwell’s equations in a standard hyper-
bolic form. For example, for vacuum fields in 2D

Fo 0 —chB,
k, ch. 0
d E. | & —cB, i} cB,
il "7l o |l o |0 ®
B, —cE, 0
B ek —cE
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where now c¢ is the speed of light. We take as our degrees of
freedom the x, y, and z components of the fields at the nodes
of triangles on an unstructured grid. In practice, rather than
implementing the scheme in the form shown by (5), we use
an equivalent two-step procedure described elsewhere [ 19},
This procedure is the finite-clement equivalent of the
familiar two-step Lax-Wendroff algorithm. We shall refer
to it as the Lax-Wendroff Taylor—Galerkin (LWTG)
scheme.

To demonstrate the basic accuracy of the Taylor-
Galerkin method, we consider the problem of resonant
electromagnetic waves in a cylindrical cavity. In Fig. 4 we
show an unstructured grid fiiling a circular region. If the
boundary is taken to be a conducting wall, then the intetior
region will support a series of eleciromagnetic normal
modes whose forms and frequencies are well known
[Ref. 22, Chap. 8]. We initialized the electromagnetic fields
in transverse-electric {TE)} polarization as a mixture of the
first eight normal modes for the cavity. These fields were
evolved in time using the LWTG scheme, We then Fourier-
analyzed the time series from an arbitrary sample point in
the interior to obtain the frequencies. Figure 5 shows the
resulting spectrum. The cavity mode numbers (s, n) and
anaiytical frequencies w,,, are indicated, where m and = are
the azimuthal and radial mede numbers and @,,,,, = x},,,,, the
nth zero of the derivative of a Bessel function, J, {x). The
agreement between the analytical and numerical results is
very good.

A careful inspection of the mode amplitudes for the cavity
test confirms that the Lax-Wendroff scheme is slightly dis-
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FIG. 4. A quasi-uniform triangulation of the interior of a circular
comdncting cavity as generated by the advancing front method.
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FIG. 5. The power spectrum obtained by Fourier transforming the
time series at an arbitrary point within the circular cavity of Fig. 4. The
arrows indicate the exact frequencies of eight normal modes that were
superimposed to initialize the fields.

sipative. This property may render LWTG inappropriate
for certain applications. In such cases, the following second-
order leapfrog scheme may be a better option. To derive it,
we expand E** ' and E” about E" *'72,

1 aEn+1/2
En+l=En+l,'2 — Az
+2 ot

1 ,,5'2E”+”2
+§At T

1 aEn+1/‘2
n ey _ 2
E"=E Zdz—at

] ZEn+U2

_ 20 = 3
+8At Py + O(A4r”), (10)

+0(4r?), (M

and perform similar expansions for B***? and B"* ' about
B". On subtracting the expansions and substituting expres-
sions for the time derivatives we obtain

Bt =Et+c 41 V=B 2, {11)
B3 B2 o gtV x EPtL (12)

One then applies the Galerkin approximation to {11)
and (12) to complete the derivation of the leapfrog
Taylor—-Galerkin (LFTG) algorithm.

The advantage of the LETG scheme is that, although its
phase errors are greater, it is dissipation-free. In Fig. 6 we
show the time histories of the ficld energy for a test problem
solved with both the LWTG and LFTG formulations. In
this problem a perturbation in the B, component at the
center of a square domain produces an outgoing cylindrical
wave. The domain was first discretized into square cells
and then into triangles by dividing the cells along their
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FI1G. 6. Time dependence of the field energy in a test case comparing
two different Taylor-Galerkin schemes. The Lax-Wendrofi-type scheme
dissipates some field energy with time, while the leapfrog version does not.

diagonals. This gave us approximately 1800 triangles of
equal size £. A wavelength was resolved by about eight
nodes. In each case, the Courant number ¢ A7/4 = 0.5. These
parameters were deliberately chosen to exaggerate the
differences in energy conservation by the two schemes. As
claimed, the leapirog algorithm is energy-conserving.

To further demonstrate the accuracy of the LFTG
scheme, we consider the passage of an electromagnetic wave
through an array of fine wires. The grid for this problem was
presented in Fig. I, Section 2. The incident wave is a TM-
polarized, smooth Gaussian pulse propagating from the left,
Figure 7 depicts the solution via LFTG after the wave has
encountered the wire. Figure 7a displays contours of E,
while 7b shows us a closeup of the magnetic field vectors

/

FIG. 7. Results of the a calculation performed in the TM polarization
on the grid of Fig. 2. The simulation is periodic in the vertical dimension.
A Gaussian pulse propagates past the grid of fine wires: (a) Contours of E,.
{b) A closeup of the magnetic field vectors around the wire.
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near the wire. In Fig. 8 we compare a time series from the
computed solution, obtained at a time-sample point located
haifway down the length of the domain, with the analytic
solution. The analytical result is derived from a circuit
model of a lossless transmission line in which the wire screen
is represented by a shunt impedance [23, 247. The agree-
ment between the two clearly is excellent,

A special consideration for electromagnetic applications
concerns the divergence constraints. In a vacuum, the ficlds
must satisfy V-B=V.E=0. Taking the divergence of the
Faraday and Ampere laws, one finds that these divergence
constraints are satisfied for all time if they are satisfied
initially. This follows directly from the continuum property
V.VxB=V.VxE=0. Unfortunately, this may not be
true in the discrete approximation. Conventional central
finite-difference approximations on staggered meshes pos-
sess a special symmetry that causes the discrete divergence
of the discrete curl to vanish. Thus, the constraints on the
fields are preserved by the time-marching algorithm. In our
Taylor-Galerkin schemes, the divergence constraints are
not satisfied exactly. However, we believe this is not a
serious difficulty for typical computational electromagnetics
applicalions.

All that we require is (a} the divergence-errors to be non-
disruptive, Le., not leading to false solutions, and (b} the
divergence errors to vanish with at least the same order as
the solution error as the mesh is refined, i.e., a consistent
reduction of the divergence-errors. This “relaxed” enforce-
ment of the divergence mimics recent developments in finite
¢lement methods for the solution of incompressible flow
problems [25].

-.2

wy =1

time ( arbitrary units)

FIG. 8. Comparison of analytic and computed results. The solid curve
is the analytical result as obtained from a circuit model. The data points are
from the simulation.



316

Our experience has shown that the divergence errors are
small, local, non-accumulating, and consistent with the
order of the method. As evidence we present Fig. 9. Here we
define the relative error in the divergence of E as

_ \V-E|
“ = |6, jox| + |0E, oyl

(13)

The discrete form of the divergence in (13) is 3, VN, . E,.
We used the lumped-mass approximation to obtain the
nodal values. Similar expressions were used {or the terms in
the denominator.

An alternative useful measure would be the magnitude of
the divergence divided by the magnitude of the curl. For the
expansion of a circular wave on a regular square lattice of
nodes using LWTG, we present three solutions: one with
20 x 20 nodes, one with 40x40, and one with 80 x 80,
One can see that the maximum relative error does not
accumulate with time. Furthermore, each level of refinement
reduces the error by almost an order of magnitude. Thus, we
expect accurate answers for any problem that is reasonably
zoned. These examples further reinforce the idea that the
Taylor-Galerkin procedure and adaptive remeshing are a
powerful combination. '

An ingenious method of reducing divergence errors
following the work of Marder [267] has been tried with
some success. Faraday’s law can be modified to include a
pseudo-current contribution, ie.,

JE ,
“==cVxB+iV(V.E),

o1 (14)

where 2 1s a positive parameter. This contribution has the
elfect of diffusing the error on the mesh. The method seems
to reduce the errors in the interior, but can sometimes
pile up errors near boundaries if not handled properly.
We found that solutions obtained without the correction

0.1
20 x 20 grid

= 001 7~ Z\
g
g ’\\/_/
vg ;
g 40 x 40 grid

©.001
1.000e-04

time {arbitrary units)

FIG. 9. The trend in the divergence error of a test problem in the TE
polarization as a function of zone refinement. Each level of refinement
in the zoning reduces the error by almost an order of magnitude, thus
confirming the high-order accuracy of the Taylor-Galerkin method.
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were quite accurate when compared against analytical
benchmarks.

An enhancement to the basic Taylor-Galerkin algorithm
is provided by the addition of a monotone-preserving
scheme, such as flux-corrected transport (FCT). FCT was
originally developed for hydrodynamic calculations based
on finite differences [27, 28]. Tt has since been extended to
finite elements [29] and has been emploved successfully in
a variety of applications.

The basic idea behind the FCT enhancement is as follows:
To prevent the appearance in the final solution of spurious
minima and maxima arising from numerical dispersion, a
low-order solution w’ is calculated by replacing M - by the
lumped mass matrix M, and adding a strong diffusion. The
solution obtained by the original algorithm is referred to as
the high-order solution u* The computed solution is
consiructed as

. un+ I u!+ Aulim’
where at each node

4 ulim = f(llh _ lli),

(13)

0< <1, (16)

is the largest fraction of the difference between the high-
order and low-order solutions that can be applied without
creating spurious extrema inu"* ',

The determination of the flux-correction coefficients f in
(16} clearly is a critical step in the procedure, establishing as
it does the reiative mix of the low-order and high-order
solutions at each node. We have developed a procedure
whereby the coeflicients are set by limiting the local
excursions of a quadratic form, proportional to the
electromagnetic energy density, in all of the variables
simultaneously, viz,,

OQ=u'+frAut —f~ du™ |2 7

Here, 4u* denotes the vector sum of the element contribu-
tions u” — u’ having the same sign as u’ and thus reinforcing
1t at the given node, and 4w~ as those having the opposite
sign. The coefficient /' is set to the maximum value which
avoids an overshoot in @ for all possible vaiues of f—,
and vice versa. This “synchronization™ of the coefficients
produces results superior to those obtained by limiting on
cach of the variables u; independently, or on a selected
single variable of the set.

The allowed local excursions of ¢ at cach node can be
determined by checking the values at neighboring nodes
only after the low-order changes have been applied (ie.,
using w' to calculate 0™*), or by also looking back 1o the
initial values (using u”). The former choice tends to “clip”
peaked distributions as they propagate across the mesh
[28] and thus is somewhat more dissipative, producing
smoother field, charge, and current distributions. The iatter
is more nearly energy-conserving, but tends to generate
noisier solutions.

In electromagnetic scattering applications, solutions are
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FIG. 10. A schematic representation of the basic scaltering problem in electromagnetics, The total electric field at all} times is a sum of the incident

field E; and the scattered field E,.

sought most conveniently by exploiting the linearity of the
Maxwell equations and solving for the scattered fields only.
The influence of the incident fields is expressed through
boundary conditions (at perfectly conducting bodies) and
volume source terms (in dielectric and/or permeable
media). Away from the scatterer, waves must be outward-
propagating. A schematic of this situation is shown in
Fig. 10. The FCT enhancement provides an easy and
straightforward method for imposing the radiation condi-
tion at the outer boundary of the computational domain:
the correction coefficients f* are set to zero there. The
scheme thus becomes essentially upwind at the outer
boundary, and the waves are absorbed as they approach the
edge of the domain. The slow dissipation of the clipping
limiter may in fact be a further asset in scattering problems,
since it gently damps the waves as they propagate away
from the scatterer toward the absorbing boundary.

As an example of an LWTG-FCT solution to a scattering
problem, consider Fig. 11. There we display the electric-field
vectors and magnetic-field contours for TE-mode scattering
by a circular cylinder. The grid for this problem was shown
in Fig. 3, Section 2. A plane wave is incident from the left,
and the dimensionless parameter ka =10, where k is the
wavenumber of the incident wave and a is the radius of the
cylinder. Quasi-cylindrical waves are scattered off of the
illuminated side of the cylinder, while nearly plane waves
are evident on the shadow side. These latter largely cancel
the incident wave, leaving a small residual total field (E' +
E‘, B'+ B*) in the shadow. The damping of the scattered
waves as they approach the outer boundary can be seen
clearly.

In two dimensions, an analysis of the scattering problem
yields an asymptotic expression for the scattered electric
field E°,

2 /2 ‘ )
B~ () e s, (18)
ko

where p is the distance from the scatterer to the observing

point and ¥ is the scattering angle. The complex scattering
amplitude is the integral

Sz(‘ﬁ):iéce‘fk-%x*

= [K(i - E)—k*x (' x EY— k(' x B*)] I,
(19)
where k* is the wavenumber of the scattered wave, k') =k,
and C is any contour completely enclosing the scatterer with
unit normal #i". The associated differential scattering cross
section per unit length is
B 418:()°

AW) = i Lok
oY) = Nim 2 EE T R

(20)

FIG. 11. Final results of the scattering calculation performed on the
grid of Fig. 3b: (a) Scattered electric field vectors. (b) Scattered magnetic
field contours.



318

The dependence on the incident wavevector k' is implicit in
the scattered fields (E°, B*). Expressions stmilar to (18)-(20)
hold for the scattering amplitude 8,(6, ¢) and differential
scattering cross section oi(8, ¢) in three dimensions
[Ref 22, Chap. 9].

We have evaluated the Fourier amplitudes of the scat-
tered fields for the solution shown in Fig. 11 and used them
to calculate the scattering amplitude S,(i} for the cylinder.
The result is shown in Fig, 12, For comparison, we also
show the analytical solution to this problem [30], which
was evaluated by machine summation of the series expan-
sions. The agreement is excellent. A broad plateau is evident
in the scattering amplitude at angles near back scattering
(Y = 180°), and a characteristic, modulated diffraction
pattern near forward scattering (i 2-0°). Note that the
amplitude varies with the scattering angle by more than an
order of magnitude, corresponding to some 25 dB of varia-
tion in the cross section a,(i). All of this structure is
reproduced accurately by the numerical solution. The
excellent ‘agreement observed on the integrated values
represented by the Fourier amplitudes corresponds to
similarly good agreement in the primitive variable £ and B.
Comparable results have been obtained for the complemen-
tary, transverse-magnetic (TM) mode of scattering. Empiri-
cal comparisons have shown that scattering errors are
cvidently second-order in the mesh spacing. This was
deduced from computations on reguiar meshes at three
diiferent element sizes and two different wavelengths.

The methods proposed in this paper are reasonably
fast when properly programmed. The Lax-Wendroff style
Taylor-Galerkin method running on a two-processor Cray
X-MP took about 15 us per node per timestep.

4. CONCLUSIONS

Qur results demonstrate that the Taylor—Galerkin finite
element method is a very useful and powerful technique for

AMPL 1 TUDE PHASE

FIG. 12. The scattering amplitude and phase as a function of angle for
the problem depicted in Figs. 3 and 11. The solid line is the exact result
while the dashed line is computed.
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solving problems in computational electromagnetics. We
have considered two basic formulations. The first, a
Lax-Wendroffl type scheme, has excelient phase accuracy
but is slightly dissipative, the amount of dissipation depend-
ing inversely on the Courant number. The second, a leap-
frog variant, is non-dissipative but not as accurate in its
phase properties. Both methods are, however, at least
second-order accurate. Although neither guarantees that
divergence constraints are locally satisfied, the errors
introduced are small if the problem is properly zoned.
For problems involving propagation or scattering, these
divergence errors should not be a concern.

The Lax—Wendrofl algorithm can be enhanced by adding
a monotone-preserving scheme such as flux-corrected trans-
port. This allows the high-order-accurate LWTG solution
to be used wherever the result does not violate the
monotonicity constraints imposed by the flux limiter. In
other regions, just enough additienal dissipation is provided
locally to prevent the creation of new exirema. The solu-
tions obtained with the LWTG-FCT scheme are smoother
and, for our scattering tests at least, more accurate than
those obtained without the FCT enhancement. Thus,
LWTG-FCT is generally preferred to the bare LWTG
scheme. However, for problems in which the dissipation
must be kept to an absolute minimum, the dissipationless
LFTG (leapfrog) scheme without FCT then would be the
method of choice.

These Taylor-Galerkin schemes implemented on
unstructured grids offer a great advantage for elec-
tromagnetic problems. They allow small features to be
zoned within a large-scale problem with a mirimum num-
ber of zones. They also allow complicated geometric objects
10 be realistically and efficiently represented. The flexibility
of using unstructured grids permits the mesh to be refined
either dynamically, as in the H-refinement technique, or
iteratively, as in the adaptive-remeshing approach. The
powerful combination of the Taylor—Galerkin procedure
with unstructured grids could make time-domain eiec-
tromagnetic calculations the method of choice for an even
broader class of applications than is now the case.

Parenthetically, we note that this conclusion may apply
cqually well in some areas of computational acoustics.
There, the Maxwell equations are replaced by the acoustic
(linearized hydrodynamical) equations, which have a
similar hyperbolic structure. Indeed, it is easy to show that
there is a one-to-one mapping between scattering problems
invoiving perfect conductors and TE- or TM-mode elec-
tromagnetic waves on the one hand, and acoustic waves
striking perfectly hard or soft objects, respectively, on the
other.

In electromagnetics, there is one area of application for
which Taylor-Galerkin schemes are probably not optimal.
These reiate to simulations involving charged particies. In
particle-in-cell {PIC) simulations of plasmas and beams,
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the fundamentat requirements of a good field algorithm
emphasize different aspects of the solution than those in
other areas of computational electromagnetics. In par-
ticular, the small relative divergence, or charge-conserva-
tion, errors that can be readily tolerated in propagation
problems, may produce serious errors in PIC codes. On
the other hand, dispersion errors and other numerical
pathologies that are potentially deadly to scattering
problems are not as serious for PIC. What is important is
that the solution algorithm be fast and more or less second-
order accurate. Moreover, the solution must be free of
divergence (charge-conservation) errors. Recent finite
volume methods [31] may be more appropriate for PIC
applications.

In conclusion, we believe that the Taylor—Galerkin
techniques we have described for electromagnetics on
unstructured grids are very powerful and versatile. One of
the advantages of the approach is that it is formulated as a
hyperbolic problem in which the electromagnetic nature of
the problem is expressed solely in terms of its fluxes and
boundary conditions. This means that it is possible to com-
bine a number of linear and nonlinear hyperbolic physics
models within a unified framework. Thus, such processes as
clectromagnetic and acoustic scattering, fluid dynamics,
heat transport, and others can exist at minimal complexity
within the same simulation code. This could be a great
advantage in the next generation of genecral-purpose
scicntific and engineering software.
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